研究方向一:单细胞、单颗粒光谱分析方法研究

时间:2020-10-31

在单细胞层面进行分子组分分析,可以研究同一个种群内细胞个体之间的差异,尤其是细胞对于外界刺激下的响应过程表现出的异质性,有助于了解引起这些差异性的内在分子机制,对于药物研发、疾病诊断等均具有非常重要的意义。激光光镊拉曼光谱(Raman Tweezers)是一种无损、无标记的单细胞操控和分子组分分析技术。拉曼光镊利用激光的力学效应,将单个细胞或者颗粒物囚禁在光强极值点附近(如图1所示),并激发单个细胞的拉曼散射。通过对拉曼散射光谱提供的分子“指纹”信息可以对细胞中的核酸、蛋白、脂质等生物分子进行定性的分析和定量的测量。图2为单个巨大芽孢杆菌孢子的拉曼光谱。

 

图1 激光光镊用于单细胞俘获和囚禁


图2. 单个巨大芽孢杆菌孢子的拉曼光谱

拉曼光镊技术不仅可以用于单细胞的识别、分类,还可以用于监测细胞中的生物分子在生物生理过程中的动态响应。此外,拉曼光镊技术还可以与荧光显微、光学成像以及微流控等多种技术集成,实现对单细胞的多模态、高通量测量。图3为拉曼光镊和荧光显微技术相结合用于单芽孢萌发动态过程监测。

 

图3. 蜡样芽孢杆菌孢子在丙氨酸作用下的动态萌发过程。(a) 单芽孢的相衬显微图像;(b)单芽孢的荧光显微图像(核酸染料 syto 16);(c)4个不同芽孢萌发过程中CaDPA浓度变化曲线;(d)对应的syto 16荧光强度变化曲线。

 

除了单细胞拉曼光谱,实验室也利用激光诱导击穿光谱(LIBS)对环境单颗粒物如大气颗粒物、海洋微塑料等进行多元素检测。单颗粒元素组成分析,不仅能够定量评估环境颗粒物对人体健康的影响,而且能够实现对颗粒物的分类、溯源以及排放控制。图4为单颗粒LIBS用于微塑料多元素检测的示意图以及单颗粒的LIBS光谱。


图4. 单颗粒LIBS检测原理以及单颗粒的LIBS光谱

 

 

承担课题:

1. 国家重点研发计划课题,口岸食品快检产品和智能监控设备系统化适用性评价研究(2019YFC1605501),2019.12-2022.12

2. 广西科学院科研发展基金, 水体环境微米级塑料微粒快速鉴别技术的建立及其应用, 2018.08-2021.07

 

发表的主要论文:

1.  D Chen, T Wang, Y Ma, G Wang, Q Kong, Pengfei Zhang*, R Li*, Rapid characterization of heavy metals in single microplastics by laser induced breakdown spectroscopy, Science of The Total Environment, 743, 140850 (2020).

2.  Chen, D., Huang, Z., Wang, T., Ma, Y., Zhang, Y., Wang, G., Zhang, P.*, “High-throughput analysis of single particles by micro laser induced breakdown spectroscopy,” Analytica Chimica Acta, 1095, 14-19 (2020).

3.  Zhang P., Huang, Z., Ma, Y., Li, Y., Ali, N., Li, Q., Chen, D., “On-line detection of radioactive and non-radioactive heavy metals in tobacco smoke using portable laser-induced breakdown spectroscopy,” Analyst, 144, 3567-3572 (2019).

4.  Miao, Z., Zhang P., Zhang Y., Huang X., Liu J., Wang G., “Single-cell analysis reveals the effects of glutaraldehyde and formaldehyde on individual Nosema bombycis spores.”, Analyst, 144 (9), 3136-3143 (2019).

5.  Zhang, P. *, Song, G., and Yu, L., "Optical Trapping of Single Quantum Dots for Cavity Quantum Electrodynamics," Photonics Research, 3, 6(3): 182-185 (2018).

6.  Rao, L., Feeherry, F., Ghosh, S., Liao, X., Lin, X., Zhang, P., Li, Y., Doona, C., and Setlow, P., "Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants," Food Microbiology, 72, 112-127 (2018).

7.  Tao, Z., Zhang, P., Qin, Z., Li, Y.Q. and Wang, G., "Poly(3-hydroxybutyrate) anabolism in Cupriavidus necator cultivated at various carbon-to-nitrogen ratios: insights from single-cell Raman spectroscopy," Journal of Biomedical Optics, 21(9), 097005-097005 (2016).

8.  Tao, Z., Peng, L., Zhang, P., Li, Y.Q. and Wang, G., "Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy," Sensors, 16(8), 1257 (2016).

9.  Liang, J., Zhang, P., Setlow, P., and Li, Y.-Q., "High-precision fitting measurements of the kinetics of size changes during germination of individual Bacillus spores," Applied and Environmental Microbiology, 80(15), 4606-4615 (2014).

10.  Zhang, P., Liang, J., Yi, X., Setlow, P., and Li, Y.-Q., "Monitoring of Commitment, Blocking and Continuation of Nutrient Germination of Individual Bacillus subtilis Spores," Journal of Bacteriology, 196(13), 2443-2454 (2014).